Image denoising by sparse 3D transform-domain collaborative ltering

نویسندگان

  • Kostadin Dabov
  • Alessandro Foi
  • Vladimir Katkovnik
چکیده

—We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2D image fragments (e.g. blocks) into 3D data arrays which we call "groups". Collaborative ltering is a special procedure developed to deal with these 3D groups. We realize it using the three successive steps: 3D transformation of a group, shrinkage of the transform spectrum, and inverse 3D transformation. The result is a 3D estimate that consists of the jointly ltered grouped image blocks. By attenuating the noise, the collaborative ltering reveals even the nest details shared by grouped blocks and at the same time it preserves the essential unique features of each individual block. The ltered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A signi cant improvement is obtained by a specially developed collaborative Wiener ltering. An algorithm based on this novel denoising strategy and its ef cient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality. Index Terms—image denoising, sparsity, adaptive grouping, block-matching, 3D transform shrinkage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Image Denoising Technique in the Contourlet Transform Domain

The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...

متن کامل

Image restoration by sparse 3D transform-domain collaborative filtering

We propose an image restoration technique exploiting regularized inversion and the recent block-matching and 3D filtering (BM3D) denoising filter. The BM3D employs a non-local modeling of images by collecting similar image patches in 3D arrays. The so-called collaborative filtering applied on such a 3D array is realized by transformdomain shrinkage. In this work, we propose an extension of the ...

متن کامل

Joint Image Sharpening and Denoising by 3d Transform-domain Collaborative Filtering

In order to simultaneously sharpen image details and attenuate noise, we propose to combine the recent blockmatching and 3D Þltering (BM3D) denoising approach, based on 3D transform-domain collaborative Þltering, with alpha-rooting, a transform-domain sharpening technique. The BM3D exploits grouping of similar image blocks into 3D arrays (groups) on which collaborative Þltering (by hard-thresho...

متن کامل

Image and Video Restoration with Nonlocal Transform-Domain Filtering

Vision is the most important source of information for humans and the acquisition of images has numerous applications in science, engineering, medicine and also in consumer devices such as cameras, mobile phones, etc. Digital image acquisition, in particular, has become the most common means of producing images; it has almost fully replaced image acquisition on ...lm. A typical digital acquisit...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007